Ch 03: 2D Motion (Projectile Motion)WorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: A physics student on Planet Exidor throws a ball, and it follows the parabolic trajectory shown in the figure . The balls position is shown at 1s intervals until =3s. At =1s, the balls velocity is =( 2.0+ 2.0 )/s.Determine the balls velocity at =0.Determine the balls velocity at =2s.Determine the balls velocity at =3s.What is the value of on Planet Exidor?What was the balls launch angle?

Solution: A physics student on Planet Exidor throws a ball, and it follows the parabolic trajectory shown in the figure . The balls position is shown at 1s intervals until exttip{t}{t} =3s. At exttip{t}{t}

Problem

A physics student on Planet Exidor throws a ball, and it follows the parabolic trajectory shown in the figure A figure shows the parabolic trajectory of a ball on the xy-plane. No explicit coordinates or units are given. Four ball’s positions are depicted. At the time of 0 seconds, the ball is at the origin. At 1 second, the ball is on the uprising part of the parabola. A velocity vector for that moment is drawn. The two seconds mark is at the apex of the trajectory, and the three seconds mark is on the descending part of the parabola at the same height as the 1 second point.. The balls position is shown at 1s intervals until =3s. At =1s, the balls velocity is =( 2.0+ 2.0 )/s.

Determine the balls velocity at =0.

Determine the balls velocity at =2s.

Determine the balls velocity at =3s.

What is the value of on Planet Exidor?

What was the balls launch angle?