Ch 01: Units & VectorsWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: The radius of a uniform solid sphere is measured to be (6.50 ± 0.20) cm and its mass is measured to be (1.85 ± 0.02) kg. Determine the density of the sphere in kilograms per cubic meter and the uncertainty in the density.

Problem

The radius of a uniform solid sphere is measured to be (6.50 ± 0.20) cm and its mass is measured to be (1.85 ± 0.02) kg. Determine the density of the sphere in kilograms per cubic meter and the uncertainty in the density.

Solution

We're asked to determine the density and its uncertainty for a sphere given its radius and mass.

For operations with uncertainty, we’ll follow two different rules depending on whether we're adding/subtracting or multiplying/dividing:

  • When measurements are added or subtracted, sum the absolute or relative uncertainty—the result is the same. 
  • When measurements are multiplied or divided, sum the relative uncertainties.

So anytime you square a measurement, add the uncertainty twice (three times for a cubed measurement).

To convert between absolute uncertainty and relative uncertainty, we’ll use this formula (m=measurement, Δu=absolute uncertainty):

m±u=m±(um)

We'll cover mass and density more in a later video, but you may already know that density is mass over volume, ρ = m/V (ρ is the Greek letter"rho"). 

The volume of a sphere is given by 

V=43π r3.

Solution BlurView Complete Written Solution