Ch 23: Electric PotentialWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Solution: Two charged spherical conductors are connected by a long conducting wire. A total charge of q > 0 is placed on this combination of two spheres. Sphere 1 has a radius of r1 and sphere 2 has a radius

Problem

Two charged spherical conductors are connected by a long conducting wire. A total charge of q > 0 is placed on this combination of two spheres. Sphere 1 has a radius of r1 and sphere 2 has a radius of r2, where r2 > r1. If q1 represents the charge on sphere 1 and q 2 the charge on sphere 2, what is the ratio q1 / q2 of the charges?

1. q1 / q2 = r2 / r1

2. q1 / q2 = r1 / r1 + r2

3. q1 / q2 = (r2 / r1)2

4. q1 / q2 = r2 / r1 + r2

5. None of these

6. q1 / q2 = 1 

7. q1 / q2 = (r1 / r2)2

8. q1 / q2 = r1 / r2