Problem: An electromagnetic wave propagates through a vacuum in the +x-direction, carrying an intensity of 150 W/m2. At t = 0, the electric field has zero amplitude, and after 0.01 s, the electric field strength grows to its maximum value, pointing in the +y direction. Write equations describing the electric and magnetic fields as sinusoidal oscillations, including the appropriate unit vectors to denote direction.

🤓 Based on our data, we think this question is relevant for Professor Bratton's class at CSUS.

FREE Expert Solution
Problem Details

An electromagnetic wave propagates through a vacuum in the +x-direction, carrying an intensity of 150 W/m2. At t = 0, the electric field has zero amplitude, and after 0.01 s, the electric field strength grows to its maximum value, pointing in the +y direction. Write equations describing the electric and magnetic fields as sinusoidal oscillations, including the appropriate unit vectors to denote direction.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Electromagnetic Waves as Sinusoidal Waves concept. You can view video lessons to learn Electromagnetic Waves as Sinusoidal Waves. Or if you need more Electromagnetic Waves as Sinusoidal Waves practice, you can also practice Electromagnetic Waves as Sinusoidal Waves practice problems.

How long does this problem take to solve?

Our expert Physics tutor, Juan took 10 minutes and 40 seconds to solve this problem. You can follow their steps in the video explanation above.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Bratton's class at CSUS.