Problem: A thin-walled hollow sphere with radius R = 0.050 m is released from rest at the top of an incline, a vertical distance of 2.0 m above the bottom of the incline. The moment of inertia of the sphere about the rotation axis through its center is (2/3) mR2. There is sufficient friction for the sphere to roll without slipping. What is the angular velocity of rotation of the sphere when it gets to the bottom of the incline?

🤓 Based on our data, we think this question is relevant for Professor Nielsen's class at UVU.

FREE Expert Solution
Problem Details

A thin-walled hollow sphere with radius R = 0.050 m is released from rest at the top of an incline, a vertical distance of 2.0 m above the bottom of the incline. The moment of inertia of the sphere about the rotation axis through its center is (2/3) mR2. There is sufficient friction for the sphere to roll without slipping. What is the angular velocity of rotation of the sphere when it gets to the bottom of the incline?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Conservation of Energy in Rolling Motion concept. You can view video lessons to learn Conservation of Energy in Rolling Motion. Or if you need more Conservation of Energy in Rolling Motion practice, you can also practice Conservation of Energy in Rolling Motion practice problems.

How long does this problem take to solve?

Our expert Physics tutor, Jeffery took 6 minutes and 12 seconds to solve this problem. You can follow their steps in the video explanation above.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Nielsen's class at UVU.