Problem: A box with mass 5.00 kg is pulled up a 36.9° incline by a constant force  F that has magnitude 75.0 N and that is parallel to the incline. The distance along the incline from the bottom to the top is 6.00 m. During the motion of the box, the surface of the incline exerts a constant friction force fk = 18.0 N on the box, in a direction opposite to the motion.If the box starts froom rest at the botttom of the incline, what is the kinetic energy of the box when it reaches the top of the incline?

FREE Expert Solution
Problem Details

A box with mass 5.00 kg is pulled up a 36.9° incline by a constant force  that has magnitude 75.0 N and that is parallel to the incline. The distance along the incline from the bottom to the top is 6.00 m. During the motion of the box, the surface of the incline exerts a constant friction force fk = 18.0 N on the box, in a direction opposite to the motion.

If the box starts froom rest at the botttom of the incline, what is the kinetic energy of the box when it reaches the top of the incline?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Net Work & Kinetic Energy concept. You can view video lessons to learn Net Work & Kinetic Energy. Or if you need more Net Work & Kinetic Energy practice, you can also practice Net Work & Kinetic Energy practice problems.

How long does this problem take to solve?

Our expert Physics tutor, Patrick took 4 minutes and 47 seconds to solve this problem. You can follow their steps in the video explanation above.