Unit vector cross product:

$\overline{)\begin{array}{rcl}\mathbf{i}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{j}& {\mathbf{=}}& {\mathbf{k}}\\ \mathbf{j}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{i}& {\mathbf{=}}& \mathbf{-}\mathbf{}\mathbf{k}\\ \mathbf{j}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{k}& {\mathbf{=}}& {\mathbf{i}}\\ \mathbf{k}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{j}& {\mathbf{=}}& \mathbf{-}\mathbf{}\mathbf{i}\\ \mathbf{k}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{i}& {\mathbf{=}}& {\mathbf{j}}\\ \mathbf{i}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{k}& {\mathbf{=}}& \mathbf{-}\mathbf{}\mathbf{j}\\ \mathbf{i}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{i}& {\mathbf{=}}& {\mathbf{0}}\\ \mathbf{j}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{j}& {\mathbf{=}}& {\mathbf{0}}\\ \mathbf{k}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{k}& {\mathbf{=}}& {\mathbf{0}}\end{array}}$

$\stackrel{\mathbf{\rightharpoonup}}{\mathbf{E}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{-}\mathbf{}\mathit{E}\hat{\mathbf{k}}\mathbf{,}\mathbf{}\stackrel{\mathbf{\rightharpoonup}}{\mathbf{B}}\mathbf{}\mathbf{=}\mathbf{}\mathbf{-}\mathbf{}\mathit{B}\hat{\mathbf{i}}$

Consider each of the electric- and magnetic-field orientations

What is the direction of propagation of the wave if E = - Ek^, B = - Bi^. Express the direction of the propagation vector, P, as a unit vector. Its three components should be entered in order (x,y,z) separated by commas. For example, if the wave propagates only in the -x direction, enter -1,0,0. <-- for all of them

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Electromagnetic Waves as Sinusoidal Waves concept. You can view video lessons to learn Electromagnetic Waves as Sinusoidal Waves. Or if you need more Electromagnetic Waves as Sinusoidal Waves practice, you can also practice Electromagnetic Waves as Sinusoidal Waves practice problems.