# Problem: In a "worst-case" design scenario, a 2000-kg elevator with broken cables is falling at 4.00 m/s when it first contacts a cushioning spring at the bottom of the shaft. The spring is supposed to stop the elevator, compressing 2.00 m as it does so. During the motion a safety clamp applies a constant 17000-N frictional force to the elevator.What is the speed of the elevator after it has moved downward 1.00 m from the point where it first contacts a spring?When the elevator is 1.00 m below point where it first contacts a spring, what is its acceleration?

⚠️Our tutors found the solution shown to be helpful for the problem you're searching for. We don't have the exact solution yet.

###### Problem Details

In a "worst-case" design scenario, a 2000-kg elevator with broken cables is falling at 4.00 m/s when it first contacts a cushioning spring at the bottom of the shaft. The spring is supposed to stop the elevator, compressing 2.00 m as it does so. During the motion a safety clamp applies a constant 17000-N frictional force to the elevator.

What is the speed of the elevator after it has moved downward 1.00 m from the point where it first contacts a spring?

When the elevator is 1.00 m below point where it first contacts a spring, what is its acceleration?

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Springs & Elastic Potential Energy concept. You can view video lessons to learn Springs & Elastic Potential Energy. Or if you need more Springs & Elastic Potential Energy practice, you can also practice Springs & Elastic Potential Energy practice problems.