Ch 16: Periodic MotionWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Motion (Projectile Motion)
Ch 05: Intro to Forces (Dynamics)
Ch 06: Friction, Inclines, Systems
Ch 07: Centripetal Forces & Gravitation
Ch 08: Work & Energy
Ch 09: Conservation of Energy
Ch 10: Momentum & Impulse
Ch 11: Rotational Kinematics
Ch 12: Rotational Inertia & Energy
Ch 13: Torque & Rotational Dynamics
Ch 14: Rotational Equilibrium
Ch 15: Angular Momentum
Ch 16: Periodic Motion
Ch 17: Waves & Sound
Ch 18: Fluid Mechanics
Ch 19: Heat and Temperature
Ch 20: Kinetic Theory of Ideal Gasses
Ch 21: The First Law of Thermodynamics
Ch 22: The Second Law of Thermodynamics
Ch 23: Electric Force & Field; Gauss' Law
Ch 24: Electric Potential
Ch 25: Capacitors & Dielectrics
Ch 26: Resistors & DC Circuits
Ch 27: Magnetic Fields and Forces
Ch 28: Sources of Magnetic Field
Ch 29: Induction and Inductance
Ch 30: Alternating Current
Ch 31: Electromagnetic Waves
Ch 32: Geometric Optics
Ch 33: Wave Optics
Ch 35: Special Relativity
Ch 36: Particle-Wave Duality
Ch 37: Atomic Structure
Ch 38: Nuclear Physics
Ch 39: Quantum Mechanics

Concept #1: Intro to Simple Harmonic Motion

Practice: A mass-spring system with an angular frequency ω = 8π rad/s oscillates back and forth. (a) Assuming it starts from rest, how much time passes before the mass has a speed of 0 again? (b) How many full cycles does the system complete in 60s?

Concept #2: Equations of Simple Harmonic Motion

Practice: A 4-kg mass on a spring is released 5 m away from equilibrium position and takes 1.5 s to reach its equilibrium position. (a) Find the spring’s force constant. (b) Find the object’s max speed.

Practice: What is the equation for the position of a mass moving on the end of a spring which is stretched 8.8cm from equilibrium and then released from rest, and whose period is 0.66s? What will be the object’s position after 1.4s?