Ch 15: Periodic MotionWorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Concept #1: Intro to Simple Harmonic Motion

Practice: A mass-spring system with an angular frequency ω = 8π rad/s oscillates back and forth. (a) Assuming it starts from rest, how much time passes before the mass has a speed of 0 again? (b) How many full cycles does the system complete in 60s?

Concept #2: Equations of Simple Harmonic Motion

Practice: A 4-kg mass on a spring is released 5 m away from equilibrium position and takes 1.5 s to reach its equilibrium position. (a) Find the spring’s force constant. (b) Find the object’s max speed.

Practice: What is the equation for the position of a mass moving on the end of a spring which is stretched 8.8cm from equilibrium and then released from rest, and whose period is 0.66s? What will be the object’s position after 1.4s?