Ch 04: Intro to Forces (Dynamics)WorksheetSee all chapters
All Chapters
Ch 01: Units & Vectors
Ch 02: 1D Motion (Kinematics)
Ch 03: 2D Motion (Projectile Motion)
Ch 04: Intro to Forces (Dynamics)
Ch 05: Friction, Inclines, Systems
Ch 06: Centripetal Forces & Gravitation
Ch 07: Work & Energy
Ch 08: Conservation of Energy
Ch 09: Momentum & Impulse
Ch 10: Rotational Kinematics
Ch 11: Rotational Inertia & Energy
Ch 12: Torque & Rotational Dynamics
Ch 13: Rotational Equilibrium
Ch 14: Angular Momentum
Ch 15: Periodic Motion (NEW)
Ch 15: Periodic Motion (Oscillations)
Ch 16: Waves & Sound
Ch 17: Fluid Mechanics
Ch 18: Heat and Temperature
Ch 19: Kinetic Theory of Ideal Gasses
Ch 20: The First Law of Thermodynamics
Ch 21: The Second Law of Thermodynamics
Ch 22: Electric Force & Field; Gauss' Law
Ch 23: Electric Potential
Ch 24: Capacitors & Dielectrics
Ch 25: Resistors & DC Circuits
Ch 26: Magnetic Fields and Forces
Ch 27: Sources of Magnetic Field
Ch 28: Induction and Inductance
Ch 29: Alternating Current
Ch 30: Electromagnetic Waves
Ch 31: Geometric Optics
Ch 32: Wave Optics
Ch 34: Special Relativity
Ch 35: Particle-Wave Duality
Ch 36: Atomic Structure
Ch 37: Nuclear Physics
Ch 38: Quantum Mechanics

Concept #1: Force Problems with Motion

Practice: A block of unknown mass is initially at rest on a frictionless horizontal surface. When you push on it with a constant horizontal force of 5 N, the block starts to move and covers 24 m in the first 6 seconds. Find the mass of the block.

Example #1: More Forces with Motion

Practice: A 1,000-kg car leaves a skid mark of 80 m while coming to a stop. If the maximum force the brakes are capable of is 8,000N, find the car’s initial velocity before braking.

Practice: A gun shoots a 10 g bullet out of its 8.0 cm-long barrel with a muzzle speed of 400 m/s. Find the force applied on the bullet by the gun. Find force (magnitude and direction) applied on the gun by the bullet.