Ch 23: Electric Force & Field; Gauss' LawWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Motion (Projectile Motion)
Ch 05: Intro to Forces (Dynamics)
Ch 06: Friction, Inclines, Systems
Ch 07: Centripetal Forces & Gravitation
Ch 08: Work & Energy
Ch 09: Conservation of Energy
Ch 10: Momentum & Impulse
Ch 11: Rotational Kinematics
Ch 12: Rotational Inertia & Energy
Ch 13: Torque & Rotational Dynamics
Ch 14: Rotational Equilibrium
Ch 15: Angular Momentum
Ch 16: Periodic Motion
Ch 17: Waves & Sound
Ch 18: Fluid Mechanics
Ch 19: Heat and Temperature
Ch 20: Kinetic Theory of Ideal Gasses
Ch 21: The First Law of Thermodynamics
Ch 22: The Second Law of Thermodynamics
Ch 23: Electric Force & Field; Gauss' Law
Ch 24: Electric Potential
Ch 25: Capacitors & Dielectrics
Ch 26: Resistors & DC Circuits
Ch 27: Magnetic Fields and Forces
Ch 28: Sources of Magnetic Field
Ch 29: Induction and Inductance
Ch 30: Alternating Current
Ch 31: Electromagnetic Waves
Ch 32: Geometric Optics
Ch 33: Wave Optics
Ch 35: Special Relativity
Ch 36: Particle-Wave Duality
Ch 37: Atomic Structure
Ch 38: Nuclear Physics
Ch 39: Quantum Mechanics

Practice: The electric flux through each surface of a cube is given below. Which surfaces of the cube does the electric field run parallel to? 

Φ1 = 100 Nm2 /C           Φ4 = 0 Nm2 /C
Φ2 = 20 Nm2 /C             Φ5 = −40 Nm2 /𝐶
Φ3 = 0 Nm2 /C               Φ6 = −80 Nm2 /𝐶

Example #1: Flux Through Angled Surface

Example #2: Flux Through Cube

Practice: Where does the normal vector point for a spherical shell?

Example #3: Flux Through Spherical Shell due to Point Charge

Practice: What is the total flux through the two surfaces depicted in the following figure? Note that surface 1 has an area of 50 cm2 and surface 2 has an area of 100 cm2 , and E = 500 N/C.