Ch 23: Electric Force & Field; Gauss' LawWorksheetSee all chapters
All Chapters
Ch 01: Intro to Physics; Units
Ch 02: 1D Motion / Kinematics
Ch 03: Vectors
Ch 04: 2D Motion (Projectile Motion)
Ch 05: Intro to Forces (Dynamics)
Ch 06: Friction, Inclines, Systems
Ch 07: Centripetal Forces & Gravitation
Ch 08: Work & Energy
Ch 09: Conservation of Energy
Ch 10: Momentum & Impulse
Ch 11: Rotational Kinematics
Ch 12: Rotational Inertia & Energy
Ch 13: Torque & Rotational Dynamics
Ch 14: Rotational Equilibrium
Ch 15: Angular Momentum
Ch 16: Periodic Motion
Ch 17: Waves & Sound
Ch 18: Fluid Mechanics
Ch 19: Heat and Temperature
Ch 20: Kinetic Theory of Ideal Gasses
Ch 21: The First Law of Thermodynamics
Ch 22: The Second Law of Thermodynamics
Ch 23: Electric Force & Field; Gauss' Law
Ch 24: Electric Potential
Ch 25: Capacitors & Dielectrics
Ch 26: Resistors & DC Circuits
Ch 27: Magnetic Fields and Forces
Ch 28: Sources of Magnetic Field
Ch 29: Induction and Inductance
Ch 30: Alternating Current
Ch 31: Electromagnetic Waves
Ch 32: Geometric Optics
Ch 33: Wave Optics
Ch 35: Special Relativity
Ch 36: Particle-Wave Duality
Ch 37: Atomic Structure
Ch 38: Nuclear Physics
Ch 39: Quantum Mechanics

Concept #1: Intro to Electric Fields

Practice: A 1.5uC charge, with a mass of 50g, is in the presence of an electric field that perfectly balances its gravity. What magnitude does the electric field need to be, and in what direction does it need to point?

Concept #2: Electric Field due to a Point Charge

Example #1: Zero Electric Field due to Two Charges

Practice: If two equal charges are separated by some distance, they form an electric dipole. Find the electric field at the center of an electric dipole, given by the point P in the following figure, formed by a 1C and a – 1C charge separated by 1 cm.

Example #2: Electric Field Above Two Charges (Triangle)

Practice: 4 charges are arranged as shown in the following figure. Find the electric field at the center of the arrangement, indicated by the point P.

Example #3: Balancing a Pendulum in Electric Field

Practice: In the following figure, a mass m is balanced such that its tether is perfectly horizontal. If the mass is m and the angle of the electric field is 𝜃, what is the magnitude of the electric field, E?