Ch. 10 - Addition ReactionsWorksheetSee all chapters
All Chapters
Ch. 1 - A Review of General Chemistry
Ch. 2 - Molecular Representations
Ch. 3 - Acids and Bases
Ch. 4 - Alkanes and Cycloalkanes
Ch. 5 - Chirality
Ch. 6 - Thermodynamics and Kinetics
Ch. 7 - Substitution Reactions
Ch. 8 - Elimination Reactions
Ch. 9 - Alkenes and Alkynes
Ch. 10 - Addition Reactions
Ch. 11 - Radical Reactions
Ch. 12 - Alcohols, Ethers, Epoxides and Thiols
Ch. 13 - Alcohols and Carbonyl Compounds
Ch. 14 - Synthetic Techniques
Ch. 15 - Analytical Techniques: IR, NMR, Mass Spect
Ch. 16 - Conjugated Systems
Ch. 17 - Aromaticity
Ch. 18 - Reactions of Aromatics: EAS and Beyond
Ch. 19 - Aldehydes and Ketones: Nucleophilic Addition
Ch. 20 - Carboxylic Acid Derivatives: NAS
Ch. 21 - Enolate Chemistry: Reactions at the Alpha-Carbon
Ch. 22 - Condensation Chemistry
Ch. 23 - Amines
Ch. 24 - Carbohydrates
Ch. 25 - Phenols
Ch. 26 - Amino Acids, Peptides, and Proteins

Addition Texas Two-Step

See all sections
Sections
Addition Reaction
Markovnikov
Hydrohalogenation
Acid-Catalyzed Hydration
Oxymercuration
Hydroboration
Hydrogenation
Halogenation
Halohydrin
Carbene
Epoxidation
Epoxide Reactions
Dihydroxylation
Ozonolysis
Ozonolysis Full Mechanism
Oxidative Cleavage
Alkyne Oxidative Cleavage
Alkyne Hydrohalogenation
Alkyne Halogenation
Alkyne Hydration
Alkyne Hydroboration
Additional Practice
Thermodynamics of Addition-Elimination Equilibria
Stereospecificity vs. Stereoselectivity
Sulfonation
Oxymercuration-Reduction Full Mechanism
Hydroboration-Oxidation Full Mechanism
Alkoxymercuation
Interhalogenation
Haloether Formation
Simmons-Smith Addition Mechanism
Regiospecificity of Acid-Catalyzed Ring Openings
Anti Vicinal Dihydroxylation
Ozonolysis Retrosynthesis
LiBr and Acetic Acid for Anti Vinyl Dihaldes
Addition Reagent Facts
Predicting Stereoisomers of Addition Reactions
Addition Missing Reagent
Addition Synthesis
Addition Texas Two-Step
Addition Multi Step
Addition Retrosynthesis
Addition to Concave vs. Convex Rings

Solution: Propose a sequence of reactions to prepare the target compound from the indicated starting materials. All of the carbon atoms present in the target compound must originate in the designated starting m

Problem

Propose a sequence of reactions to prepare the target compound from the indicated starting materials. All of the carbon atoms present in the target compound must originate in the designated starting materials! You may use as much of each starting material as necessary to achieve the desired synthesis. In addition to these staring materials, you may also use any other organic and/or inorganic reagents necessary. It is OK to use other reagents that contain carbon, as long as these carbon atoms do not end up in the final target compound! It is only necessary to show the overall transformations involved in your proposed syntheses – please do not write curved arrow mechanisms in answering this question! Be sure that your final answer is indicated clearly and unambiguously.