All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

The Van der Waals Equation is used when dealing with real, non-ideal gases. 

Understanding the Van der Waals Equation

Concept #1: Van der Waals Equation

The Van der Waals Equation takes into consideration that real gases do not behave ideally. As a result these gases can experience attractive or repulsive forces while also having definite volumes. 

Calculations with the Van der Waals Equation

Example #1: Van der Waals Equation

Example #2: Van der Waals Equation

Example #3: Van der Waals Equation

Example #4: Van der Waals Equation