Ch.16 - Aqueous Equilibrium WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

In a Strong Acid-Strong Base Titration we do not use an ICF Chart or ICE Chart to determine the pH of the solution. 

Strong Acid-Strong Base Titration

Concept #1: Strong Acid-Strong Base Titration

Example #1: Calculate the pH of the solution resulting from the titration of 75.0 mL of 0.100 M HBrO4 with 55.0 mL of 0.100 M NaNH2


Let's take a look here where it says, 'Calculate the pH of the solution resulting from the titration of 75.0 mL of 0.100 M HBrO4 with 55 mL of 0.100 M NaNH2. Remember, this right here is a strong acid. This right here is a strong base. What we're going to say here is because both are strong, we don't have to use an ICE, we don’t have to use an ICF.
What do we do instead? We're going to say step one is find the moles. Remember, how do we find moles? Remember, moles equals molarity times liters. Divide the mL by a thousand, multiply them times their lit on their molarities.
Now, remember for the base, for the base you're always supposed to check how many OH minuses, NH2 minuses, H minuses and O2 mi