Recall that percent yield is given by the following equation:

$\overline{)\mathbf{\%}\mathbf{yield}\mathbf{=}\frac{\mathbf{actual}\mathbf{}\mathbf{yield}}{\mathbf{theoreticl}\mathbf{}\mathbf{yield}}\mathbf{\times}\mathbf{100}}$

If calculated using moles:

$\mathbf{\%}\mathbf{yield}\mathbf{=}\frac{\mathbf{moles}\mathbf{}\mathbf{\left(}\mathbf{actual}\mathbf{\right)}}{\mathbf{moles}\mathbf{}\mathbf{\left(}\mathbf{theortical}\mathbf{\right)}}\mathbf{\times}\mathbf{100}$

But mass can be calculated from moles:

molar mass = g/mol

$\mathbf{mass}\mathbf{=}\mathbf{mole}\mathbf{\times}\frac{\mathbf{grams}}{\mathbf{mole}}$

If calculated using mass:

$\mathbf{\%}\mathbf{yield}\mathbf{=}\frac{{(\mathrm{moles}\times {\displaystyle \frac{\mathrm{grams}}{\mathrm{mole}}})}_{\mathbf{actual}}}{{\mathbf{(}\mathbf{moles}\mathbf{\times}\frac{\mathbf{grams}}{\mathbf{mole}}\mathbf{)}}_{\mathbf{theoretical}}}\mathbf{\times}\mathbf{100}$

We typically calculate the percent yield using the actual yield and theoretical yield in units of mass (grams or kilograms).

Would the percent yield be different if the actual yield and theoretical yield were in units of amount (moles)?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Percent Yield concept. If you need more Percent Yield practice, you can also practice Percent Yield practice problems.