From the Ideal Gas Law:

$\overline{){\mathbf{PV}}{\mathbf{=}}{\mathbf{nRT}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{n}\mathbf{=}\frac{\mathbf{m}}{\mathbf{M}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}(\mathrm{PV}=\frac{m}{\overline{)M}}\mathrm{RT})\overline{)\mathbf{M}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{\overline{)\mathbf{P}}\mathbf{V}\overline{)\mathbf{M}}}{\overline{)\mathbf{PM}}}\mathbf{=}\frac{\mathbf{mRT}}{\mathbf{PM}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{V}}{\mathbf{=}}\frac{\mathbf{mRT}}{\mathbf{PM}}}$

Use the molar volume of a gas at STP to determine the volume (in L) occupied by 30.1 g of neon at STP.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Standard Temperature and Pressure concept. You can view video lessons to learn Standard Temperature and Pressure. Or if you need more Standard Temperature and Pressure practice, you can also practice Standard Temperature and Pressure practice problems.