🤓 Based on our data, we think this question is relevant for Professor Ratliff's class at USF.

$\overline{)\mathbf{KE}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{mv}}^{\mathbf{2}}}$

if same velocity

↑ KE = ↑ m

For aluminum

**$\mathbf{density}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{mass}}{\mathbf{volume}}\phantom{\rule{0ex}{0ex}}\mathbf{mass}\mathbf{}\mathbf{=}\mathbf{}\mathbf{density}\mathbf{}\mathbf{\times}\mathbf{}\mathbf{volume}\phantom{\rule{0ex}{0ex}}\mathbf{mass}\mathbf{}\mathbf{=}\mathbf{}\mathbf{2}\mathbf{.}\mathbf{70}\mathbf{}\frac{\mathbf{g}}{\overline{){\mathbf{cm}}^{\mathbf{3}}}}\mathbf{\times}\mathbf{196}\mathbf{}\overline{){\mathbf{cm}}^{\mathbf{3}}}$**

**mass = 529.2 g**

Consider the two spheres shown here, one made of silver and the other of aluminum.

If you release the spheres simultaneously, they will have the same velocity when they hit the ground. Will they have the same kinetic energy? If not, which sphere will have more kinetic energy?