🤓 Based on our data, we think this question is relevant for Professor Wojcinski's class at OREGONSTATE.

density aluminum = 2.7 g/cm^{3}

1 in = 2.54 cm

calculate the volume of 86 g aluminum:

$\mathbf{V}\mathbf{=}\mathbf{86}\mathbf{}\overline{)\mathbf{g}}\mathbf{\times}\frac{{\mathbf{cm}}^{\mathbf{3}}}{\mathbf{2}\mathbf{.}\mathbf{7}\mathbf{}\overline{)\mathbf{g}}}\phantom{\rule{0ex}{0ex}}\mathbf{V}\mathbf{=}\mathbf{31}\mathbf{.}\mathbf{8518}\mathbf{}{\mathbf{cm}}^{\mathbf{3}}\mathbf{\times}{\left(\frac{1\mathrm{in}}{2.54\mathrm{cm}}\right)}^{\mathbf{3}}\phantom{\rule{0ex}{0ex}}\mathbf{V}\mathbf{=}\mathbf{31}\mathbf{.}\mathbf{8518}\mathbf{}\overline{){\mathbf{cm}}^{\mathbf{3}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}{\mathbf{in}}^{\mathbf{3}}}{\mathbf{16}\mathbf{.}\mathbf{387}\mathbf{}\overline{){\mathbf{cm}}^{\mathbf{3}}}}$

**V = 1.9437 in**^{3}

calculate radius:

A solid aluminum sphere has a mass of 86 g .

Use the density of aluminum to find the radius of the sphere in inches.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Density concept. You can view video lessons to learn Density. Or if you need more Density practice, you can also practice Density practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Wojcinski's class at OREGONSTATE.