🤓 Based on our data, we think this question is relevant for Professor Huskey's class at NEWARK.

$\overline{){\mathbf{Lattice}}{\mathbf{}}{\mathbf{Energy}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}\frac{|\mathrm{cation}\mathrm{charge}\times \mathrm{anion}\mathrm{charge}|}{\mathbf{cation}\mathbf{}\mathbf{radius}\mathbf{}\mathbf{+}\mathbf{}\mathbf{anion}\mathbf{}\mathbf{radius}}}$

K_{2}S

$\mathbf{Lattice}\mathbf{}\mathbf{energy}\mathbf{}\mathbf{=}\mathbf{}\frac{|\left(+1\right)\times \left(-2\right)|}{\mathbf{4}\mathbf{+}\mathbf{3}}$

**Lattice energy = 0.2857**

K_{2}O

$\mathbf{Lattice}\mathbf{}\mathbf{energy}\mathbf{}\mathbf{=}\mathbf{}\frac{|\left(+1\right)\times \left(-2\right)|}{\mathbf{4}\mathbf{+}\mathbf{2}}$

**Lattice energy = 0.3333**

CaS

$\mathbf{Lattice}\mathbf{}\mathbf{energy}\mathbf{}\mathbf{=}\mathbf{}\frac{|\left(+2\right)\times \left(-2\right)|}{\mathbf{4}\mathbf{+}\mathbf{3}}$

**Lattice energy = 0.5714**

Which of the following compounds requires the most energy to convert one mole of the solid into separate ions?

(a) K_{2}S

(b) K_{2}O

(c) CaS

(d) Cs_{2}S

(e) CaO