All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A 100.-L flask contains a mixture of methane (CH4) and argon gases at 25°C. The mass of argon present is 228 g and the mole fraction of methane in the mixture is 0.650. Calculate the total kinetic energy of the gaseous mixture.

Solution: A 100.-L flask contains a mixture of methane (CH4) and argon gases at 25°C. The mass of argon present is 228 g and the mole fraction of methane in the mixture is 0.650. Calculate the total kinetic ene

Problem

A 100.-L flask contains a mixture of methane (CH4) and argon gases at 25°C. The mass of argon present is 228 g and the mole fraction of methane in the mixture is 0.650. Calculate the total kinetic energy of the gaseous mixture.

Solution

Recall: The total kinetic energy of an ideal gas is given by:

where n = total moles of gas, R = universal gas constant (8.314 J/mol K), T = temperature.

Assuming that methane and argon behave ideally in the mixture, this means that we just need to determine the total moles of gases present.

The molar mass of argon is 39.95 g/mol. The moles of Ar present in the mixture is:

Solution BlurView Complete Written Solution