Problem: During the discussion of gaseous diffusion for enriching uranium, it was claimed that 235UF6 diffuses 0.4% faster than 238UF6. Show the calculation that supports this value. The molar mass of 235UF6 = 235.043930 + 6 × 18.998403 = 349.034348 g/mol, and the molar mass of 238UF6 = 238.050788 + 6 × 18.998403 = 352.041206 g/ mol.

🤓 Based on our data, we think this question is relevant for Professor Staff's class at NAU.

FREE Expert Solution

Using the Graham's Law of Effusion, we can calculate the approximate rate of each gases using their molar masses:

View Complete Written Solution
Problem Details

During the discussion of gaseous diffusion for enriching uranium, it was claimed that 235UF6 diffuses 0.4% faster than 238UF6. Show the calculation that supports this value. The molar mass of 235UF6 = 235.043930 + 6 × 18.998403 = 349.034348 g/mol, and the molar mass of 238UF6 = 238.050788 + 6 × 18.998403 = 352.041206 g/ mol.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Effusion concept. You can view video lessons to learn Effusion. Or if you need more Effusion practice, you can also practice Effusion practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Staff's class at NAU.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry - OpenStax 2015th Edition. You can also practice Chemistry - OpenStax 2015th Edition practice problems.