Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Does a photon of visible light (λ ≈ 400 to 700 nm) have sufficient energy to excite an electron in a hydrogen atom from the n = 1 to the n = 5 energy state? From the n = 2 to the n = 6 energy state?

Solution: Does a photon of visible light (λ ≈ 400 to 700 nm) have sufficient energy to excite an electron in a hydrogen atom from the n = 1 to the n = 5 energy state? From the n = 2 to the n = 6 energy state?

Problem

Does a photon of visible light (λ ≈ 400 to 700 nm) have sufficient energy to excite an electron in a hydrogen atom from the n = 1 to the n = 5 energy state? From the n = 2 to the n = 6 energy state?

Solution

We use the Balmer Equation below to get the wavelength, needed to excite an electron with the given situations.

We have to know that this equation is written to provide the wavelength for the energy emitted when an electron goes from a higher to a lower energy level.   To get the right sign, we just need to reverse the final and initial energy levels.

View the complete written solution...