Problem: The work function of an element is the energy required to remove an electron from the surface of the solid element. The work function for lithium is 279.7 kJ/mol (that is, it takes 279.7 kJ of energy to remove 1 mole of electrons from 1 mole of Li atoms on the surface of Li metal; 1 mol Li 5 6.022 x 1023 atoms Li). What is the maximum wavelength of light that can remove an electron from an atom on the surface of lithium metal?

⚠️Our tutors found the solution shown to be helpful for the problem you're searching for. We don't have the exact solution yet.

FREE Expert Solution
Problem Details

The work function of an element is the energy required to remove an electron from the surface of the solid element. The work function for lithium is 279.7 kJ/mol (that is, it takes 279.7 kJ of energy to remove 1 mole of electrons from 1 mole of Li atoms on the surface of Li metal; 1 mol Li 5 6.022 x 1023 atoms Li). What is the maximum wavelength of light that can remove an electron from an atom on the surface of lithium metal?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Photoelectric Effect concept. You can view video lessons to learn Photoelectric Effect. Or if you need more Photoelectric Effect practice, you can also practice Photoelectric Effect practice problems.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition practice problems.