Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: What wavelength of light will be required to remove an electron from the n = 3 shell of a hydrogen atom?

Solution: What wavelength of light will be required to remove an electron from the n = 3 shell of a hydrogen atom?

Problem

What wavelength of light will be required to remove an electron from the n = 3 shell of a hydrogen atom?

Solution

The wavelength of the light required to remove the electron from the n = 3 shell can be calculated using the speed of light:

c = speed of light = 3.0x108 m/s
 λ = wavelength, in m

Since we don’t have frequency, we can rearrange the equation:

Recall the energy equation:

View the complete written solution...