Problem: Arrange the following ionic compounds in order of decreasing amount of energy released in lattice formation: NaCl , CaS , TlN , and RbBr .Atoms involved in bonds are usually more stable than they would be otherwise. This means that energy is released in the formation of the bond. For ionic bonds, Coulomb's law is used to calculate this energy:where E is energy in joules (J), k is a constant equal to 1/(4πϵ0) = 8.99 × 109 (J ⋅ m)/C2, q1 and q2 are the charges of the two ions, and dd is the distance between the nuclei of the two ions in meters (m). The charges on the ions (q1 and q2) are expressed in units of electrical charge, coulombs (C), and are calculated using the charge on the ion and the charge on an electron (1.60 × 10− 19 C).While the bond energy calculated by Coulomb's law pertains to a single ionic bond, lattice energy pertains to all the ionic bonding among a group of atoms arranged in a crystal lattice. Lattice energy is calculated by using the Coulomb's law equation, but with a different constant (unique to each substance) that takes into account the crystalline structure of the substance.By convention, lattice energy is defined as the amount required to either break an ionic solid into individual gaseous ions, or to form an ionic solid from gaseous ions.

FREE Expert Solution

The lattice energy can be estimated using:


lattice energy=cation charge×anion chargecation period # + anion period #


View Complete Written Solution
Problem Details

Arrange the following ionic compounds in order of decreasing amount of energy released in lattice formation: NaCl , CaS , TlN , and RbBr .


Atoms involved in bonds are usually more stable than they would be otherwise. This means that energy is released in the formation of the bond. For ionic bonds, Coulomb's law is used to calculate this energy:

where E is energy in joules (J), k is a constant equal to 1/(4πϵ0) = 8.99 × 109 (J ⋅ m)/C2, q1 and q2 are the charges of the two ions, and dd is the distance between the nuclei of the two ions in meters (m). The charges on the ions (q1 and q2) are expressed in units of electrical charge, coulombs (C), and are calculated using the charge on the ion and the charge on an electron (1.60 × 10− 19 C).

While the bond energy calculated by Coulomb's law pertains to a single ionic bond, lattice energy pertains to all the ionic bonding among a group of atoms arranged in a crystal lattice. Lattice energy is calculated by using the Coulomb's law equation, but with a different constant (unique to each substance) that takes into account the crystalline structure of the substance.

By convention, lattice energy is defined as the amount required to either break an ionic solid into individual gaseous ions, or to form an ionic solid from gaseous ions.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Lattice Energy concept. You can view video lessons to learn Lattice Energy. Or if you need more Lattice Energy practice, you can also practice Lattice Energy practice problems.