🤓 Based on our data, we think this question is relevant for Professor Stollenz's class at KSU.

(1) Calculate rate (k) at first order

$\overline{){\mathbf{k}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}\frac{\mathbf{ln}\left(2\right)}{{\mathbf{t}}_{\mathbf{1}\mathbf{/}\mathbf{2}}}}\phantom{\rule{0ex}{0ex}}\mathbf{k}\mathbf{}\mathbf{=}\mathbf{}\frac{\mathbf{ln}\mathbf{\left(}\mathbf{2}\mathbf{\right)}}{\mathbf{8}\mathbf{}\overline{)\mathbf{days}}\mathbf{}\left({\displaystyle \frac{24\mathrm{hrs}}{1\overline{)\mathrm{day}}}}\right)}$

k = 3.60x10^{-3} hrs^{-1}

(2) **t = 8 AM to 7 PM the next day = 35 hours**

**Initial mass = 2.5 µg**

At 8:00 A.M., a patient receives a 2.5 µg dose of I-131 to treat thyroid cancer. If the nuclide has a half-life of eight days, what mass of the nuclide remains in the patient at 6:00 P.M. the next day? (Assume no excretion of the nuclide from the body.)