Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Consider the following reaction: 2 NO2 (g) → 2 NO (g) + O 2 (g)      rate = k [NO 2]2  When the initial concentration of NO2 is 100 mM, it takes 55 s for 90% of the NO 2 to react. Calculate the rate constant. a) 0.042 mM–1·s–1 b) 1.8 x 10–5 mM–1·s–1  c) 1.6 mM–1·s–1 d) 1.6 x 10–3 mM–1·s–1  e) 0.13 mM–1·s–1  ö

Solution: Consider the following reaction: 2 NO2 (g) → 2 NO (g) + O 2 (g)      rate = k [NO 2]2  When the initial concentration of NO2 is 100 mM, it takes 55 s for 90% of the NO 2 to react. Calculate the rate

Problem

Consider the following reaction:

2 NO2 (g) → 2 NO (g) + O 2 (g)      rate = k [NO 2]2 

When the initial concentration of NO2 is 100 mM, it takes 55 s for 90% of the NO 2 to react. Calculate the rate constant.

a) 0.042 mM–1·s–1

b) 1.8 x 10–5 mM–1·s–1 

c) 1.6 mM–1·s–1

d) 1.6 x 10–3 mM–1·s–1 

e) 0.13 mM–1·s–1 

ö