Ch. 17 - Chemical ThermodynamicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Boltzmann Equation

See all sections
Sections
Spontaneous Reaction
First Law of Thermodynamics
Entropy
Gibbs Free Energy
Additional Practice
Boltzmann Equation
Additional Guides
Second and Third Laws of Thermodynamics

Solution: Consider the following energy levels, each capable of holding two particles:Draw all the possible arrangements of the two identical particles (represented by X) in the three energy levels. What total energy is most likely, that is, occurs the greatest number of times? Assume that the particles are indistinguishable from each other.

Solution: Consider the following energy levels, each capable of holding two particles:Draw all the possible arrangements of the two identical particles (represented by X) in the three energy levels. What total

Problem

Consider the following energy levels, each capable of holding two particles:

Draw all the possible arrangements of the two identical particles (represented by X) in the three energy levels. What total energy is most likely, that is, occurs the greatest number of times? Assume that the particles are indistinguishable from each other.