Ch.15 - Acid and Base EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The catalytic efficiency of an enzyme, called its activity, indicates the rate at which it catalyzes the reaction. Most enzymes have optimum activity over a relatively narrow pH range, which is related to the pH of the local cellular fluid. The pH profiles of three digestive enzymes are shown.Salivary amylase begins digestion of starches in the mouth and has optimum activity at a pH of 6.8; pepsin begins protein digestion in the stomach and has optimum activity at a pH of 2.0; and trypsin, released in pancreatic juices, continues protein digestion in the small intestine and has optimum activity at a pH of 9.5. Calculate [H3O+] in the local cellular fluid for each enzyme.

Solution: The catalytic efficiency of an enzyme, called its activity, indicates the rate at which it catalyzes the reaction. Most enzymes have optimum activity over a relatively narrow pH range, which is relate

Problem

The catalytic efficiency of an enzyme, called its activity, indicates the rate at which it catalyzes the reaction. Most enzymes have optimum activity over a relatively narrow pH range, which is related to the pH of the local cellular fluid. The pH profiles of three digestive enzymes are shown.

Salivary amylase begins digestion of starches in the mouth and has optimum activity at a pH of 6.8; pepsin begins protein digestion in the stomach and has optimum activity at a pH of 2.0; and trypsin, released in pancreatic juices, continues protein digestion in the small intestine and has optimum activity at a pH of 9.5. Calculate [H3O+] in the local cellular fluid for each enzyme.