Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution:
Find ΔHrxn for the following reaction: N2O(g) + NO2(g) → 3 NO(g)
Use the following reactions with known ΔH values: 2 NO(g) + O2(g) → 2 NO2(g); ΔH = –113.1 kJN2(g) + O2(g) → 2 NO(g); ΔH = +182.6 kJ2 N2O(g) → 2 N2(g) + O2(g); ΔH = –163.2 kJ

Solution: Find ΔHrxn for the following reaction: N2O(g) + NO2(g) → 3 NO(g)Use the following reactions with known ΔH values:2 NO(g) + O2(g) → 2 NO2(g); ΔH = –113.1 kJN2(g) + O2(g) → 2 NO(g); ΔH = +182.6 kJ2 N2O(

Problem

Find ΔHrxn for the following reaction: N2O(g) + NO2(g) → 3 NO(g)

Use the following reactions with known ΔH values:
2 NO(g) + O2(g) → 2 NO2(g); ΔH = –113.1 kJ

N2(g) + O2(g) → 2 NO(g); ΔH = +182.6 kJ

2 N2O(g) → 2 N2(g) + O2(g); ΔH = –163.2 kJ